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A systematic description of the Caratheodory-Fejer method (CF method) is
given for near-best uniform rational approximation of a (high degree) polynomial
on a disk. On the basis of Takagi's extension of the Caratheodory-Fejer theorem
degeneracies are characterized and it is proven that they appear in the C F table,
which is introduced, in square blocks. Related method for complex and real
trigonometric rational approximation, and for ordinary real rational approximation
on an interval. are then derived. For each problem several types of CF approx
imation are defined depending on truncation. Certain weight functions are also
allowed.

INTRODUCTION

In systems theory [10,21,28, 40j, digital signal processing [24, 25J, and
numerical analysis [46, 47 j there has been much interest recently in a new
numerical method for computing near-best solutions of the rational
Chebyshev approximation problem on the unit disk D. If the given function!
is a polynomial (possibly of very high degree), this method can be based
upon Takagi's extension [41,42] of the classical theorem of Caratheodory
and Fejer (abbreviated CF in the following) [11, 391. It mainly requires then
the singular value decomposition of a finite Hankel matrix. This version of
the method was proposed and investigated by Trefethen [46, 47j, who called
it the CF method. For both the resulting CF approximation and the best
approximation Trefethen presented strong theoretical and numerical results
on the near-cicurlarity of the error curves. For polynomial approximants the
method had been mentioned before by Hollenhorst [27J and by G. H. Elliott
[19], both of whom derived it from a corresponding method for real
polynomial and rational approximation on an interval. This latter method we
will call Chebyshev-CF approximation (in analogy to Gragg's terminology
in Pade approximation [22 D. Its polynomial version was proposed by
Darlington [15] and in [26], where an asymptotic error analysis is also
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given. A very special rational case of the method and similar approaches to
the polynomial approximation problem had appeared implicitly or explicitly
in a variety of papers, starting with the monograph of Bernstein [81: see. e.g ..
Achieser 11, 2, 4, 5], Tabot 143,441, Clenshaw 1141, Meinardus 1361. Lam
and D. Elliott 118.29-331, Hollenhorst 1271, and G. H. Elliott \191.
However, none of those authors seem to have been aware of Takagi's
theorem. and only a few mentioned the CF theorem. Some results on the
general real rational case were given by Lam [29, 311, but the method she
proposes is somewhat different from ours (even in the polynomial case). and
her tratment can be simplified a great deal by transforming the problem from
the interval to the unit disk, as we do here.

A comprehensive theory generalizing the CF approach to the approx
imation of an arbitrary f E L.r.(DD) by a rational function without poles in
D was derived by Adamjan et al. [61. However. its numerical application
seems limited to the case where f itself is rational 110. 28, 40 I. Here we
restrict ourselves to the simpler but still very useful case in which f is (essen
tially) a polynomial. By slightly extending Takagi's results [41, 421 we first
present a complete discussion of the related minimal extension problem and
of the related CF table (Sections I and 2). By applying a modification of the
splitting technique previously used by Gragg [22, 231 and others in Pade
approximation, we then introduce CF approximation by complex
(Laurent-CF) and real (Fourier-CF) trigonometric rational functions as
well as by real rational functions on a real interval (Chebyshev-CF). which
now emerges as a special case (Section 3).

CF approximation and its extensions to rational functions / have a close
connection with algebraically solvable examples of best polynomial or
rational approximation. In conjunction with Talbot's theory 143. 44j many
published examples are easily explained in a unified way. We hope to cover
this in a forthcoming paper.

Recently. the principle of the CF method has also been applied to Faber
series in order to compute near-best polynomial and rational approximations
on "general" simply connected domains in the plane 116, 171.

I. TAKAGI'S EXTENSION OF THE CF THEOREM

When investigating the singular value problem related to the CF problem.
Takagi 141,421 found that all singular values and singular vectors
correspond to certain minimal meromorphic extensions of the given
polynomiaL His results were later partly rediscovered by Achieser [3-5 [,
Lam [29,311, and Talbot [43.44 J. Finally, they were generalized by Clark
\12. 13 j, and Adamjan et al. [61. who by heavy use of results from
functional analysis came up with an appealing and complete, but difficult,
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theory. For the derivation and the discussion of a numerical method based
upon this theory it is nevertheless sufficient to study Takagi's case. In this
section we summarize his results enriched by a few simple consequences.

Let 9£1mn denote the set of rational functions with numerator degree at
most m, denominator degree at most n, and no poles on the unit circle aD.
Let Y m:= ''%mo; for p E ,9m, p(z) = ao +a1z + ... +amz m with ao 0/= 0,
am 0/= 0 define the recipocal polynomial p* by p*(z) =
am +am_ 1z + ... +aoz m (the bar denotes complex conjugation). The
numbers of zeros or poles we state always include multiplicity. Finally, Ilfll
denotes the Chebyshev norm (ess sup norm) off on aD, which in the case
where the function f is not defined on aD but has a radial limit almost
everywhere on aD (e.g., if f E H ocJ is defined by a limit on growing circles
(cf. Rudin 138]).

Our setting of the stage is summarized in

ASSUMPTION 1.0. Let ho 0/= 0, hI' h2 ,... be given complex numbers.
Consider the Hankel matrices

C
hk -1

I}H'- hk_1 k =0,1,....k'- .

ho 0

Fo fixed k = K let HKhave the singular values 0 0 >a I> ... >OK (>0). Set
a _ I := 00, OK -r I := 0 and assume that

(1.1 )

hence, if Pk(aJ := dim ker(HfH k - a;,Ik) denotes the multiplicity of a" as
singular value ofHk, we assume PK(a,,) =/1 + 1.

Takagi's results in [41 j, which include extensions of the classical CF
theorem [11, 39] and of a theorem due to Landau [34], are only valid in
what he later [42] called the regular case, i.e., under the additional
assumption PK_I(a,,) = /1, which he missed in [41]. We call av a regular
singular value of HK if this assumption holds. Since the general results that
include the irregular case are quite complicated, we state those for the
regular case first.

THEOREM 1.1 [41, Theorems I, III, IV [. If Assumption 1.0 holds and if
a v is a regular singular value of H K , then:
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(i) There is a unique unimodular rational function fl of degree at most
K such that for z -+ °

(1.2 )

(ii) fl(z) = flw(z):= w(z)/w*(z), where w E j~ .u has exactly l' zeros
outside and K - /1 - v zeros inside cD and lvhere II' and w* are mutually
prime and of exact degree K- /1.

(iii) If u = (un' ...• u/y is any left singular vector of H" satisj)'ing

then

UK + UK I Z + + uoz"
Uo + UI Z + + UK Z"

w(z)

w*(z)

( 1.3)

are representations of the same rational function.

(iv) Every function h meromorphic in D. regular at 0, uniformly
bounded in some annulus R h <, Izi < 1, with at most v + ,u poles in D. for
which

h(z) = ho + hi Z + '" + h" z" +O(z" • I) ( 1.4)

as z -+ 0, satisfies II h II> a, .. Equality holds only for h = a,. il".

(v) Every function h meromorphic in D, regular at 0. with at most
K - v zeros in D. for which (1.4) holds as z ..... 0. satisfies

lim min h(Rz)1 <, a" ( 1.5)
R*j :E('J)

Equality holds on!.)' for h = a,il".

Remarks. (a) The set of vectors u satisfying (1.3) is not the full left
hand singular space //K(a,) (spanned by the /1 + I columns corresponding to
a" of the unitary matrix U in any singular value decomposition H" = UI:V II

of H K). but it spans &"K(a,,). (If imbedded into n 2K
I 2 the set mentioned is a

real subspace of dimension /1 + 1.) The full space //K(a,.) is obtained if in
Theorem 1.2 below the polynomial s is not required to be self-reciprocal.

(b) Takagi requires in (iv) and (v) that h be meromorphic in D. But if
h is meromorphic in D and inf Ih(z)1 is positive in some annulus R h <, Iz < I
(otherwise (1.5) is trivial). then l/h is the sum of a rational function with
poles in D and a bounded analytic function (in H ,): hence the limit in (1.5)
is well defined. and it is easy to check that Takagi's proof (including the
uniqueness statement based upon the classical CF theorem) remains valid. A
similar argument applies to (iv).
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Takagi's results for the irregular case are mainly based on an observation
concerning Pk(a.,) for various k ~ K. This observation, which will also be
basic for our description of the CF table (Section 2), allowed him to reduce
the irregular to the regular case. It is itself based on two facts.

First, due to the special structure of H k , Hf_1 H k - 1 may be obtained from
HfHk by deleting the first row and the first column of this latter matrix.
Hence, the singular values abkl ~ .,. ~ akk) of H k (whose squares are the
eigenvalues of HfHk ) interlace with those of H k - 1 [20]:

a(k) '- a(k-Il '- a(k)
j ,9 j ,9 HI (j = 0,..., k - 1). (1.6)

(This is a special case of a general result [45 J.) In particular,

(1.7)

(We have Pk(a v ):= 0 if a" is not a singular value of H k.)
Now, assume that Uo = U I = ... = uy_ 1 = 0 for every solution of (1.3), but

uy01= 0 for some solution. Then (1.3) implies UK = UK -I = ... = UK _ y+ I = 0,
UK_yol= 0, and

+ K-2y
a" uK_y+'" _ UY\_2Y= ho+ hlz + 00' + hK_yZK-Y+ O(ZK-y+I). (1.8)

uy+ ... + uK_yz

Hence, av is a regular singular value of H K _ 2y' Moreover, since each of the
f.1 + 1 linearly independent singular vectors yields the same rational function
in (1.8), one must be able to cancel a self-reciprocal factor s = s* E'?11 in
(1.8), cf. [42]; so the left-hand side of (1.8) reduces to a"w(z)/w*(z), where
w, w* E ''?K-2Y-1l are mutually prime. On the other hand, if we multiply both
wand w* by any polynomial of the form zj's(z) with s = s* E ,9j" and
j'+jfl=j~y+f.1, the resulting polynomial V(Z)=VK_2Y_Il+j+oo.+
VOZK-2Y-Il+j still defines a solution of HK-2Y_Il+jV = a"v, and since we may
choose r = 0, a" is in fact a regular singular value of H K_2y-Il +j' We
conclude that PK-2Y-Il+ia.,)=PK-2Y-Il(a.,)+j~1+j; thus PK_/a.,)~

y + f.1 + 1. On the other hand, PK _la,,) ~ PK(a,,) + y = Y+ f.1 + 1 due to (1. 7),
so equality must hold:

_ \ 2y + f.1 + 1 + I,
PK+/(a.,) - 1f.1 + 1 -I,

1= -2y - f.1- 1,... , -y,

1= - y,... , O.
(1.9)

This is Takagi's basic result on the irregular case [42, p. 16]. It is also clear
now that the left-hand side of (1.8) cannot reproduce ho + hi Z + ... up to
O(ZK -y+2) if y > O. For this would imply PK _y+ I (a.,) ~ PK- /a.,) + 1 (by our
previous argument), in contrast to (1.9).

Relation (1.9), which must also hold if y = 0, means that for
k E [K - 2y - f.1 - 1, K] the multiplicity Pk(a.,) increases from 0 linearly to
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L.+l
/

'------f----------1-~-----;c_..>..---_+_---------'_k

K-2y-c-l K-, K K+'

FIG. 1. Multiplicity p,(a,) of the singular value a, : the two possibilities;, 0 I i and
() > 0 (- - -).

/1 + 1 + Y at k = K ~ Y and then decreases linearly, cf. Fig. I. Since this
picture must also hold if we replace K by a larger value, we can immediately
conclude that in extension of (1.9) PK.' = /1 + I - I if ~~' ~ I ~ ,U + I and
y> O. However, if y = 0, Pk(a,.) may first increase beyond k = K. But then
there is 6 > 0 such that

\/1 + I + I,
PK rl(a,.) = !26 + /1 + I -I.

I =-,U - I..... ().

1= 6... .. ,u + 26 + I.

Let 6:= 0 if PK+ I(a,,) <PK(a,.) =/1 + I. (Thus ~'> 0 implies 6 = O. and 6 > 0
implies y = 0.) Then we may formally define y and 6 by

(:=max~O.minj):PK j I(a,)<p" ;(0,.)((.

6:= max~O. minj): P" ,j+ I(a,) < P" ,Ja,.n f.

and we can summarize the behaviour of Pk(a,) by

( 1.10)

\ 2( + /1 + 1 + l.
PK_,(a,.) = /26+/1+ 1-1.

I = ~ 2~' ~ ,U - 1... .. 6 - ".
I = 6 ~ ~',.... 26 + /1 + I.

( 1. I 1)

In particular, it is clear from Fig. 1 that 0,. is a regular value of H k if
K - 2( - /1 ~ k ~ K - Y + 6, while a, is irregular if K ~ Y + 6 < k ~
K + 26 + /1. (Note that both cases y? 0 and 6 ? 0 are taken care of by this
notation.) By applying Theorem 1.1 for these various regular cases and by
summarizing some of the above results we finally get the following
generalization of Theorem 1.1.

THEOREM 1.2. Let Assumption 1.0 be satisfied and define I' and 6 by
(1.10). Then y6 = 0, y ~ (K - /1)/2 and in addition to (1.11) the following
statements hold:
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(i) For k = K - 2y - f.i, ••• , K - y + 15 there is a unique unimodular
rational function II of degree at most k such that for z --+ 0

(1.12)

(ii) ll(z)=llw(z):= w(z)/w*(z) (independent of k), where
wE c9'K_2y_# has exactly v - y zeros outside and K - y - f.i v zeros inside
aD and where wand w* are mutually prime.

(iii) u = (u o"'" uKf is a left-hand singular vector satisfying (1.3) if
and only if u(z) := UK +UK 1Z + ... + uozK is of the form

u(z) = zy+js(z) w(z), (1.13)

where j is an arbitrary integer satisfying 0 ~ j ~ f.i and s = s* is an arbitrary
self-reciprocal polynomial of exact degree f.i j.

(iv) For k = K - 2y - f.i, ... , K - Y + 15 every function h meromorphic in
D, regular at 0, uniformly bounded in some annulus R h ~ Iz I< 1, with at
most k - K +Y+f.i + v poles in D,for which

(1.14)

as z --+ 0, satisfies II h II ~ a". Equality holds only for h = aIRw'

(v) For k = K - 2y - f.i, ..., K - y + 6 every function h meromorphic in
D, regular at 0, with at most k + y - v zeros in D, for which (1.14) holds as
z --+ 0, satisfies (1.5). Equality holds only for h aJ!,,..

(vi) Relation (Ll2) does not hold for II II" if k > K Y + 6.

(vii) For k = K - 2y - f.i, ..., K - y + 15 the matrix H k has exactly 1'- Y
singular values greater than al' and K - Y - f.i v singular values smaller
than av (independent of k). For k = K + 15 - y,..., K + 215 + f.i the
corresponding numbers are k K - 15 + v and k - 6 - f.i - v.

(viii) 1l,,(aD) has winding number t(Il,J = K - f.i - 21' with respect to
o.

Proof (i), (iv), and (v) follow from Theorem Ll with K replaced by k
since a" is a regular singular value of H k • (vii) is a consequence of (1.6) and
(Ll I). (ii), (iii), and (vi) emerged from the previous discussion; in particular,
the number of zeros of w inside and outside aD, respectively, is derived by
applying Theorem 1.1 with K replaced by k, K - 2y - f.i ~ k ~ K - y + 6,
and by using (vii). Finally, (viii) is a simple implication of (ii). I

Finally, let us state a related result of Takagi 142, p. 17] showing that the
two cases v = 0 and v + f.i = K are less complicated.
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THEOREM 1.3 1421. If 0" is the greatest or the smallest singular value
(i.e., ifo,. 0 0 oro,,=oK)' then y=O.

The proof is based on the fact that H~HK - 0;111' is semi-definite and
hence its rank K + I - PK(a,.) cannot decrease by two (as it should in view
of (1.11) if y > 0) if we delete the first row and the first column of it in order
to obtain H~_lHK.I-o;IK ,.

Note that we might obtain a simpler formulation of Theorem 1.2 by
assuming that K is chosen such that y = 6 O. However, our formulation is
the appropriate one for the application in the next section.

2. CF ApPROXIMATION ON THE UNIT DISK

Let ,r denote the space of functions that are analytic and bounded outside
the unit circle and vanish at co (i.e., f E .jf'" iff z!-> f( 1/z)/z E H,). Let
~~n be the subset of functions in ·f/mn having all poles outside cD. In

contrast let ,?~ C '?m consist of those polynomials with all zeros outside cD.
Following Trefethen 1471 we define, for m. n E I. n ~ 0,

," ._HiO + 1'/,7T nn o-./l nn ,.rr~

:;;; ._ m /1-)
·/lmn·- z ·/1nn" . ~n . tflnO '

fE#mn iff f is meromorphic in I < Izi ~ co, has t' ~ n poles in 1 < iZI < co.
is bounded in some annulus I < Izi ~ R r• and is of order (at most) G(z'" ')
as z ..... co. Also, rE .#mn iff rcan be written in the form

I m
fez} = -- '\' iiiZ!,

q(z) .i -j
(2.1)

where q E .?~ and the series converges for Iz I > I and is bounded In

1 < Iz I< R for some (and hence for every) R > I.
The problem that can be solved on the basis of Theorem 1.2 is

ProblemA. Given m<M, 11~0, lE'~f\?\1 1 and gE.~\.~ ,. g
nonvanishing in 1 ~ Iz I< co, find rE#mn that minimizes It if- g,-:

First we note that-given g as above-we have ifE ;;. j .\1' gr E ';;1 Im./I

iff1E '~\1' r E ,~mn; hence, the unweighted best approximation r~ to 1: := gl
out of '~L+m,n yields the solution r:= rx/g ,ltmn of the weighted problem.
Therefore we may assume g(z) == 1 in our discussion. Furthermore. we
assume1given in the form

l(z)
:l.

'\' h.z t' - i
- .I
i~O

(I z I > J), (2.2 )
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and define f E zm-n+ IyK , where K:= M - m +n - 1, and fO E Y'm-n by

K

fez) := I hjzM- j,
j=O

(2.3)

Now, rO E ,?!mn implies 1:= rO + fO E ,?!mn and 111- 111 = II f - rO II. Conse
quently, we are left with the problem of approximating f E zm-n+ I'?K by
rO E '?!mn' This can be accomplished with Theorem 1.2: We choose v such
that v~ n ~ v+Ii and approximate

zMf(ljz) = ho+hi Z + ." +hKzK

by z'~'l(ljz) - anIIw(z). This means we approximate fez) by
fez) - an zMlI",.(z) (where lIw'(z) = w*(z)jw(z» and l(z) =f(z) + fO(z) by

We know according to (1.12) with k = K - Y and z := 1j z that

(2.4 )

as z -> 00. (2.5)

But if 0> 0 and if we take further coefficients hK + I , ... , hK+o of 1 into
account, (1.12) holds even for k = K - Y+ o. So in view of assertion (vi) of
Theorem 1.2 we have

1*(z) = O(zm--n+r-o) but not as z -> 00. (2.6)

(In other words, if we replaced m, K by m - 0, K +0, respectively, we would
end up with the same 1*.) Now IIw' and therefore i* have exactly v - y
poles outside aD, cf. assertion (ii), so that (2.6) leads to

N*/:::1r E ,7l m '.n"

N* ,+ ,-:::1r tl: ,7l:m",nll'

m' := m - n + v - 0, n' := v - )I,

if m If < m' or n If <n'.
(2.7)

According to (2.4) the error function1- 1* has constant modulus an and
winding number M -1(1I",), i.e.,

1(1- 1*) = m - n +Ii + 2v + 1 ) m + v + 1. (2.8)

Assume now that 1E Ylm'+I.n'+1 with 1:= 0 +Y+Ii is a better approx
imation of f Then by a Rouche-type argument 1(1- 1*) = 1(1- i*) =
m' + n' + I + I, but on the other hand 1(1- i*) ~ m' + n' + I since
r-r*E,qm'+n'+ln'+I' cf. [47, Lemma 2.3]. Hence, r* is best out of
,qm'+I,n'+I' '

However, Theorem 1.2 even implies uniqueness: Let I' denote the greatest
. . h N /k1 Th N() O( m'-n'+I') O( m-n+ r- o+ I ')Integer WIt r E ,77m'+I,n'+I-l" en, r z z z
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as z->oo, and zMi(l/z)=O(ZK+I-Y+1l I') as z->O. Since zl'itl/z)=
ho + hI Z + "', the function h defined by

h(z) := z M ll(1/z) - r(l/z) I. (2.9)

which has exactly n' + I - I' = 6 + /I + v - l' poles, satisfies (1.14) with
k = K -}' + <5 - I', where 0 ~ l' ~ n' + l = <5 + /I + v. So, according to
assertion (iv) of Theorem 1.2 we have II hll > a" unless h= o,ll,,: or, in view
of (2.4) and (2.9), 111- ill> a,. unless i= i*. Summarizing we get

THEOREM 2.1. Problem A has a unique solution i*. If we assume
g(z)l(z)=hozMll'+hlzM+l 1+ ... , set K:=M-m+n·-L and adopt
the notation of Assumption 1.0 and Theorem 1.2, choosing v there such that
v~ n ~ v + /I, then i* is given by

i*(z) := l(z) - an Zl HIn,r'(Z)/ g(z). (2.10)

i* satisfies (2.7), and is best out of#m' ,1.11 +I' where I := :' + '" + ,li. The
weighted error curve (gJ - gi*)(oD) is a circle of radius a" > 0 around the
origin and has the winding number L + 1(1- i*), where (2.8) holds for the
second term.

In particular, if n = v (i.e., 0,,_1 > an)' i* E ,fiJm Il.n·,is the best approx

imation out oj'.';;m" YTI'.n' Il 'I' and 1(1- i*) = m + n + /I +1.

Remark. Adamjan et al. 161, who treat the corresponding problem with
IE L(£(oD), g(z) == I, and m = 11, do not give our details on the actual
degrees of i*.

Theorem 2.1 is best illustrated in terms of the CF table: For given J and g
the map (m, n) I-t i* induces a partition of the quadrant m < M, n ;;, 0 of the
(m, n)-plane into disjoint square blocks in each of which i* and an are fixed,
cf. Fig. 2.

-2 -1 0 2 3 M-2 M-1 m

W 011 \ !I II I
1

=- ( t=..•.•. III-- 1 f-: __
f----

ill
--

i- ii, II '1= c-
_.-

3 l-

1\
I! \= r--"r---

4 - - c-..-

- .- f:=

III I
_ .. .- _ ..

! I! [I I= -- =- -

== I
f:= ir---

-'-'- III >-- -

FIG. 2. The CF table.

~H
::; :::
~ K=3
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Any diagonal of the table corresponds to a fixed K, and the K + 1 not
necessarily distinct elements i* on a diagonal have errors a~K)?

a~K) ? ... ? akK). In any induced square block of length> I all elements on
the lth lower subdiagonal have y = I and all elements on the Ith upper
subdiagonal have b = I; on the diagonal itself y = b = O. The sum y + b +Ii is
fixed in each block and equals its length. It is clear that y > 0 is impossible
in the top row (n = 0) and the rightmost column (m = M - I). More
generally, the assertion of Theorem 1.3 becomes evident. On the other hand,
it seems clear that y > 0 or b > 0 may occur even if all singular values of HK

are simple. Finally, the quadrant m ? M, n ? 0 of the table can be thought of
as an infinite block with zero error (i* = 1).

Our original aim was to approximate 1 by r E ~~n' where m, n ? 0 are
given. Once i* is known, there are at least four reasonable ways to accom
plish this. The simplest one is evident from (2.1): If i* is written in this
form, truncating the negative terms of the Laurent series (with respect to aD)
of the "numerator" i(z) q(z) yields

f I "m, .rC (z) := -- (].zJ. (2.11)
I q(z) j:-o J

For simplicity reasons this was Trefethen's choice [47, p. 310]. We call r~f

the truncated or type I CF approximation. (In analogy to Pade approx
imation it could also be called the Frobenius-type CF approximation.) It is
clear from (2.7) that r~f E ~~'n if m' ? 0 and r~f(z) == 0 if m' < O. However,
a further reduction of both degrees may be possible: we cannot exclude the
possibility that r~f E ~~"n" with m' - mil = n' - nil > O. Moreover, we
cannot exclude the possibility that another type I CF approximation with the
same or smaller actual degrees is obtained when starting from mil, nil instead
of m,n.

The definition of the type 2 CF approximation r~f is in general less
straightforward. Let ck denote the Laurent coefficients (with respect to aD)
of i*, and let

00

;:O(z):= ~ CkZ
k

k~O

denote the analytic part of the Laurent series. We choose p E f m as the mth
partial sum of the Maclaurin series of r>(z) q(z) and define rr := plq. Note
that this is equivalent to requiring

p(z) _r>(z)=O(zm+l)
q(z)

as z ---> O. (2.12)

Hence this definition can be thought of as a fixed denominator Pade-type
approximation of the analytic part r> of F* [9]. However, in the case
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m ~ n -- 1 it turns out that ;:0 E ,;,t'~n itself, so that trivially r~f =;:0. In fact.
since

it is easy to verify that i* can be written in the form

(2.13 )

Thus. if m ~ n I, deleting the co-analytic part of the series leads to a
function in .;,t'~n' cf. 147, p. 310]. Note that (2.13) still holds if m and n are
replaced by m' and n', respectively. Hence, ;:0 E '#~n'" if m' ~ n' - 1.

Our third choice is a natural extension of the second one: We define the
type 3 CF approximation r~f as the (m, n) Pade approximation of rO. Note
that an important property of the CF approximation is sacrificed: r~f may
have poles on or inside the unit circle.

Our fourth proposal is a pragmatic combination of type I and type 2 and
is called type 2' CF approximation here. Since ;:0 = r~r E .# ;~" for m ~ n 1.
we let r~~ := ;:0 in this case. If m < n - I, we define

f 1 \.m. _ ,
r~,(z) :=-- \. (j,z'.

q(z) j--:"o J
(2.14)

This is just a type I approximation of s(z) "[,7' mil' 1 iiiZi/q(z) appearing
in (2.13). Note that the second sum there, which is deleted first. is not the
whole co-analytic part i* - ;:0 of i*. However, s has the correct asymptotic
behavior for z -4 00, while ;:0 has not, in general. In fact, from (2.13) one can
see that ;:0 E .;,t'~ _ l,n if m ~ 11 1. Hence, r~r is obtained from ;:0 by deleting
the terms of degree greater than m in the numerator of r'\ while r~f is
obtained from s by deleting the negative powers in the "numerator" of s.

Yet another proposal that is worth pursuing is the type 4 CF approx
imation r~r defined as the best £2 approximation on cD of i by elements of
the form p/q with arbitrary p E:f'm but fixed q (as in (2.12». Since ,-:0 is the
best £2 approximation of i by functions analytic in D, we have again r~f = r')
if m ~ 11 -- 1.

In order to maintain the structure of the CF table one may replace in all
these definitions m and 11 by m' and n', respectively.

Numerical experiments performed by Trefethen (private commun.)
indicate that for f(z) = e Z the type 2 and the type 3 approximations yield
error curves that are roughly twice as circular (and close to best) as those
obtained by method 1. Hence, in this sense they are substantially better,
though the error itself is diminished only very slightly, of course. However,
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for not so smooth functions the type 3 approximation may be completely
unsatisfactory when the other two yield still reasonable results.

The derivation of bounds for the truncation errors Ilf* rY11 (j= 1,...,4)
is a difficult problem. It was addressed by Hollenhorst [27] in the
unweighted polynomial case (where j = 1,...,4 are all equivalent) and, in an
asymptotic sense on small disks, by Trefethen [46,47] in the unweighted
rational case (where again j turns out to be insignificant, asymptotically).

Algorithmic details on how to compute f* and r~f and numerical examples
are given in [24,25,47]. The reduction of IIu' to IIw*, which is additionally
needed in degenerate cases, can be done with Euclid's algorithm for the
greatest common divisor.

3. LAURENT-, FOURIER-, AND CHEBYSHEV-CF ApPROXIMATION

As in Pade approximation [22, 23], one can use an additive splitting of
the Fourier series of t f------> J(e it ) to adapt the CF method to the case where J
is not analytic in D. (Though we did not assume in Section 2 that 1 is
analytic in D, it is clear that the co-analytic part of 1 fully reappears in the
error function 1 - ref if m ~ n - I.) Of course, polynomials and rational
functions analytic in D are not suitable for approximating such a function J.
Instead we approximate now by Laurent polynomials p E z-m,g;m of given
degree m (i.e., p is a linear combination of z - m, Z - m+ I,••• , I,..., z m-!, zm) and
by quotients of Laurent polynomials. We denote these spaces by

15m := z - m'~m'

respectively. (lifmn := 15m := 101 if m <0.)
The basic idea is the following one: Given a function 1E LocPJD) whose

conjugate function is also bounded, there exist J +, J - E H <Xl such that

a.e. on aD,

cf. 138, p. 264]. According to the theory of Adamjan et al. 16 j, there exist
best approximations f± E ,Pmn to 1±. Truncating f(z) := f'+ (z) + f- (1/z) to
an element of Iifmn yields an approximation of J that one may hope is close
to best. In practice one modifies this method by first truncating or, more
generally, approximating J± by f± E Y M , My m; then, Theorem 2.1 is
applicable to f ±. However, as in Pade approximation, this approach does
not work if m < n: Typically, f'± is close to an element r± E .5f'~n' hence fis
close to z f------> r+(z) + r-(1/z), but the latter is in Iifmaxlm.nJ.n and, in general,
not in Iifmn if m < n. We have been able to overcome this problem, but the
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resulting extended method is less obvious than the basic idea just described.
(In particular, we have to redefine f ±, f±, and f.)

Special attention is deserved by the case where the given function I is real

valued on D. Then 1- =f+, i.e., the Maclaurin coefficients of I are
complex conjugate to those of J+. If, in addition, these coefficients are reaL
the Fourier series of t f---> J(e it

) can be written as a cosine series and is
equivalent to the Chebyshev series of x f---> l(ei

arccos X), which is well defined
on 1:= [-I, 11. In these two cases the approximating family can be
restricted by the same conditions. We define for m, n >°

r;"n := jr E iTmn ; r(aD) c f,

On aD the spaces r m (r;,,) and ~;"n (r ;"n) are isomorphic to the spaces of
complex (real) trigonometric polynomials of degree at most m and complex
(real) trigonometric rational functions with degrees at most m and n, respec
tively. r:;, corresponds to the subset of even trigonometric polynomials,
which upon the substitution x = cos t is seen to be equivalent to the set of
ordinary (algebraic) real polynomials (in x) of degree at most m on I.
Similarly, r:;'n is equivalent to the set of real rational functions in x with
numerator degree at most m, denominator degree at most n, and without
poles on I. Though we will have these equivalent sets in mind, for simplicity
we will always stick to the variable z.

We can again allow a weight function, which is now assumed to be the
square root of a positive trigonometric polynomiaL (Of course, the case of a
positive trigonometric polynomial itself is included.)

Here is the general definition of f: Given f: z ,~a\f z .\f + ... +
ao+···+a~t+zMI (with a_ lf *0, aM-*O, M->O, M+>O).
gEr;\r;_1 (L>O) with g(z»O on aD, and m.n>O, set fi :=.t:

f-(z) :=f(l/z), and determine g+ and g := g+ by spectral factorization
such that all zeros of g' are inside aD and

g(z) = g+ (z) g-(llz). (3.2)

Solve Problem A twice for f t, g ±, m, and n, and denote the solution by fOC
(if m >M±, set f±:= f±); then let e±:= f± - r±, and define the
Laurent-CF extension i off by

i(z) :=f(z)-et(z)-e (liz). (3.3 )

Remarks. (a) For the spectral factorization required in (3.2) there exist
algorithms which directly produce the coefficients of g+, see [7,37,49, Sal·
There is no need to determine the zeros of g.
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(b) If I E g-~(M := M+ = M-), then 1- = I+' and hence r- = r+;
so, only one Problem A has to be solved. If lEg-~ and g E g-f, then
1- = 1+ = f + and r- = ;:+ = f+.

In order to get from rto a function ref E g-mn that is easily computed from
r but nevertheless in some sense an optimal approximation of r, we need
some further insight into the structure of r. We proceed essentially as in
148], but we need superscripts + and - for all quantities appearing in the
solutions of Problem A for I±' g±, m, and n. In particular, q± denotes the
"denominator" of r±, i.e., the monic polynomial of degree v± - y± whose
zeros are the zeros of w± lying outside aD, and we set

In view of (2.6),

I± (z) - e± (z) = r± (z) = O(zm-n+ y±-iJ±)

I/(z) - e+ (z)] q(z) = O(zm-n+"t-iJ+)

[/(z) - e-(l/z)] q(z) = O(z-lm-n+,,--iJ-»)

as z -t 00,

as z -t 00, (3.4a)

as z -t O. (3.4b)

{f(z) - e+(z)] q(z) is analytic outside aD except for a pole of order
m - n + v+ <5+ ~ m at 00. By (3.4a) all terms of order greater than
m - n + v+ - 0+ in the Laurent series of

r(z)q(z) I/(z)-e+(z)-e (liz)] q(z) (3.5)

are due to e-(l/z) q(z). Likewise, by (3.4b) all terms of order less than
-(m - n + v- - <5-) are due to e+(z) q(z). Let us denote the Laurent coef
ficients of e+(z)q(z) and e-(z)q(l/z) by et and e;, respectively, and let

M~+v-~8- M++v .... -o+

eT := L: e;z-k + L: eizk,
k=-m k=-m

-m-l

eR(z):= L: (e;z-k +eiZk),
k= -(1)

so that

and, by (3.5),

r(z) q(z) =/(z) q(z) - eT(z) - eR(z).

Then, if we define

(3.6a)

(3.6b)

(3.7)

(3.8)

(3.9)
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that

where

(3.10)

fi : = max j l" - j' •• v -;' (.

We call r~r the type I or Maeh~v type Laurent-CF approximation (in
analogy to Gragg's terminology in Pade approximation [22, 231). Again
there is another promising way to project i into ;/;1111: We choose P2 E ",:"
such that the type 2 or Gragg-type Laurent-CF approximation r~r:= P2/q
coincides with i in as many low-order Laurent coefficients as possible (i.e..
in the coefficients with indices-m. --m + I..... 0..... m- I. m. where Iii is as
large as possible). If i is real-valued on cD. it can be seen that at least
2m + I coefficients can be matched (i.e .. m~ m) since the linear system to
solve is Hermitian and positive definite, cf. 148[. The type 2 Laurent-CF
approximation can be thought of as Laurent-Pade-type approximation of i
with fixed denominator q. One could go one step further by permitting the
denominator to be free also and define the type 3 Laurent-CF approximation
r~f as the Laurent-Pade approximation of i. However. r~r might have a pole
on CiD, in contrast to r~f and r~r. Experiments indicate that type 2 is better
than type I and type 3, cf. 1481. Finally, type 4 is again defined as the best
L 2 approximation with fixed denominator q of r.

If we assume f E iF;1 (i.e .. real-valued) in the above definitions. then
rye E FC ~ii (j = I, .... 4) is called type j Fourier-CF approximation. Likewise.
fEr~!, g E r;, implies that the Chebyshev-CF approximation rY is in
r ~ii' i.e., r~r can be thought of as a real rational function (of
x = (z + l/z)/2) regular on I. Unweighted Chebyshev-CF approximations
are also treated in 1261 (polynomial) and 148[ (rational). The CF approx
imation on the disk (Section 2) might be called Taylor-CF approximation,
cf. the summary in Table I. Laurent-CF approximation could be generalized
by allowing different values m ± and n I in the two Problems A that are
solved. However, we do not want to proceed in this direction.

One is also tempted to modify the definition of r~r slightly in the case
where m< m, i.e., when the numerators of both it and i have lower degree
than m. Replacing m by In in the definitions (3.6a) and (3.6b) would lead to
PI E ii'm and to a modified Laurent-CF approximation f~r E iFmii . So. the
numerator degree of r~f could be reduced (and thus evaluation of r~r be made
cheaper) by deleting the terms e =m Z ± m , ... , e ± In I z t (m + I) in e r. terms that



RATIONAL CARATHEODORY-FEJER APPROXIMATION 273

TABLE I

Taylor-, Laurent-, Fourier-, and Chebyshev-CF Approximation

IE gE FE ref E

(Taylor-) CF :RMO .J; , zeros in D '~mn L~:n

Laurent-CF g'"maxIM+.M-j g-;, >OoniJD L"JiJD) rmn

Fourier-CF g-~f 1<";, >0 on iJD L~(iJD) ;;r ~n

Chebyshev-CF iT II 1<";', >0 on iJD L~(iJD) ;r~nM

are typically very small anyway iff and g are smooth enough so that the CF
method works well. Though this modified definition may be suitable in
practice, we reject it here since the asymptotic results of [48] would no
longer hold. f~f could be defined likewise as the (m, n) Laurent-Pade-type
approximation of rwith fixed denominator q.

In general, it is difficult to find out-both a priori and a posteriori
whether a complex-valued Laurent-CF approximant is close to the best
approximation, or even whether its error II Vi(f - rY)11 is close to the error
Emn(f;yg) of the best approximation. Although there is a general inclusion
theorem by Meinardus and Schwedt [36, Theorem 85], its applicability in
practice is very limited. The situation is different if f is real-valued and
approximants are restricted to 15~n or 15~n' because both for trigonometric
rational and for ordinary rational approximation a de la Vallee-Poussin-type
inclusion theorem holds [35,36, Theorem 98]. For CF approximations we
can even state a bound that holds globally for all approximations whose
"truncation error" 11 Vi(rY - P)II is known to be small. Note that for j = I

Ilyg(r~f-P)II=llg+ eR/qll, (3.11)

so a bound for this error may be obtained from estimating the factors on the
right-hand side. For the Chebyshev-CF approximation of real functions on I
with fast converging Chebyshev series this was accomplished in [261
(polynomial) and [48] (rational). Here we state the underlying basic theorem
in more general form. Note that we drop the superscript + whenever there is
no chance of confusion. (For example, we replace M+, v+ by M, v, but we
refrain from replacing f +, p+ .) In particular, n = v - y = n' and
m= m - n + v - 15 = m' now, cf. (2.7). Let E~n := E~n(J; yg) and E~n :=
E~n(J;yg) denote the errors of the best approximations of1 out of 15~n and
g-~n' respectively, with respect to the weight function yg.

THEOREM 3.1. Let!:aD--+'f1, gEg-{\g-{._1 (L:>O) with g(z»O on
aD, and m, n :> 0 be given. Assume1 is approximated by f E 15~\15~ -I such
that II Vi(1-1)11 < t: I' Assume the Fourier-CF extension r of f and the
Fourier-CF approximation rY E g-~n' (j = 1,2,3 or 4, n' = v - y) satisfy
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Ilh (i ~ r~f)I' < [,2' and /; := /; 1 + [,2 < 20" (where a" is (he singular value
appearing in the solution of Problem A). Then

(3.12)

(3.13 )

for 0 ~ A~ l' := y + v + f.l ~ n, and hence

(3.14 )

If Ai) =M (V z E aD), f E r;~, and g E r;r, (3.13) and (3.14) hold a
fortiori for E;:'+.\.,,'H'

Proof According to Theorem 2.1, g + U + ~ i+) (cD) = g -e 1 (CJD) is a
circle of radius an around 0 with winding number L + /'. where
/+ :=/U+ ~r+)=m-n+f.l+2v+1 is the winding number of the
unweighted error curve e + (aD). Consequently, there exists a set
A := jZk; k = 1,.... 2/+ f of 2/1 ordered points zk E cD such that e' (z/\) is

real and alternately positive and negative. By (3.3) and e'(l/z) = e+ (z).

(3.15 )

so f - i alternates in sign on A. Moreover. since g(z) = 1 g + (z t on aD,

Vg(Zk) If(zk) - i(zk)1 = 21 g' (z/\) e t (zk)i = 20n ·

Of course, II hu - i)11 ~ 211 g' e'II = 20n , hence

II /gU - r)11 = 211 g+ e-li = 20n •

(3.16)

(3.17 )

and by (3.15 }-(3.17) /gU - i) alternates on A. By assumption,

II h(l~ rn - /iu - i)11 ~ [,1 + [,2 = [, < 20".

so (3.17) implies (3.12), and /g (l - rj") alternates in sign on A and deviates
there at most by [, from ±20". Finally, since 2/ + = 2(m + 11 ' + I' + I). the
set j (z k' (-1/); k = 1,..., 2/ + I is an H-set (or extremal signature) for
ry E fir ~n' with respect to r~+\.n'to\' 0 ~ A~ l', cf. [351. From the general
inclusion theorem [36, Theorem 85 J one can therefore derive E~+\.n II;:'
20n - [,. On the other hand, E~+.\.",~~\ ~ 20n + [, by (3.12). I

We can interpret (3.14) in terms of the CF table: Consider one of the
square blocks of the table. Every pair (m, n) of a column leads to the same
ry (if j = 1, 2 or 4) since i is the same for the whole block and truncation
depends only on m. The numerator degree is typically m (but may be
smaller), and the denominator degree is exactly nI, which is equal to the
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value of nin the first row of the block. Inequality (3.14) implies that rY is
nearly optimal with respect to spaces g-~n whose subscripts (m, n) belong to
a subsquare whose upper- and right-side edges are part of the boundary of
the block while the left-side edge is part of the fixed column. Unfortunately,
the pair (m, n) we start with when computing f need not lie in this induced
subsquare: n > n' + I' is possible. In other words: Given m and n,
Theorem 3.1 does not yet ensure that the computed rY is nearly optimal in
g-~n (even if the assumptions on the truncation errors hold). However, the
subsquare coincides with the whole block if we choose m m'
(corresponding to the first column of the block). Of course, we cannot attain
that if m' <0.

The situation is different if we consider the modified Fourier-CF approx
imation fy E g-~'n' (the conjugate symmetric case of the modified
Laurent-CF approximation). The only modification we need in the proof of
Theorem 3.1 is that l+=m'+n'+I+1 iff 1:=y+CJ+p (as in
Theorem 2.1).

COROLLARY 3.2. For the modified
fy E g-~'n,(j = 1 or 2) Theorem 3.1 holds
y+CJ+,u in (3.13) and (3.14).

Hence, fy is near-best with respect to whole block in the CF table. This
discrepancy between ry and fy has little effect in practice, however:
Typically II rY - firll is very small, so that rY is also near-best with respect to
the whole block:

COROLLARY 3.3. Assume II Ii(J - f)11 :::;; c l' II Ii (1 fY)II:::;; C2'

IIIi(rjf - fY)11 < C3 (j = 1 or 2), and C := CI + c2 + c3 < 2on • Then

O:::;;A:::;;I:=y+CJ+,u. (3.18)

Of course, in the case of symmetry with respect to the real axis we may
also replace E' by E" in both corollaries.
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